Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds.
Antonio Dominguez-AlfaroNuria AlegretBlanca ArnaizMaitane SalsamendiDavid MecerreyesMaurizio PratoPublished in: ACS applied materials & interfaces (2020)
Neuroblastoma-derived SH-SY5Y cells have become an excellent model for nervous system regeneration to treat neurodegenerative disorders. Many approaches achieved a mature population of derived neurons in in vitro plates. However, the importance of the third dimension in tissue regeneration has become indispensable to achieve a potential implant to replace the damaged tissue. Therefore, we have prepared porous 3D structures composed uniquely of carbon nanotubes (CNT) and poly(3,4-ethylenedioxythiophene) (PEDOT) that show great potential in the tridimensional differentiation of SH-SY5Y cells into mature neurons. The scaffolds have been manufactured through electropolymerization by applying 1.2 V in a three-electrode cell using a template of sucrose/CNT as a working electrode. By this method, PEDOT/CNT 3D scaffolds were obtained with homogeneous porosities and high conductivity. In vitro analyses showed that an excellent biocompatibility of the scaffold and the presence of high amount of β-tubulin class III and MAP-II target proteins that mainly expresses in neurons, suggesting the differentiation into neuronal cells already after a week of incubation.