Login / Signup

Evaluation of AIML + HDR-A Course to Enhance Data Science Workforce Capacity for Hispanic Biomedical Researchers.

Frances L HerediaNatalie Alamo-RodriguezLenamari Oyola-VelazquezBrenda NievesKelvin CarrasquilloHarry HochheiserBrian FristenskyIstoni Daluz-SantanaEmma Fernandez-RepolletAbiel Roche-Lima
Published in: International journal of environmental research and public health (2023)
Artificial intelligence (AI) and machine learning (ML) facilitate the creation of revolutionary medical techniques. Unfortunately, biases in current AI and ML approaches are perpetuating minority health inequity. One of the strategies to solve this problem is training a diverse workforce. For this reason, we created the course "Artificial Intelligence and Machine Learning applied to Health Disparities Research (AIML + HDR)" which applied general Data Science (DS) approaches to health disparities research with an emphasis on Hispanic populations. Some technical topics covered included the Jupyter Notebook Framework, coding with R and Python to manipulate data, and ML libraries to create predictive models. Some health disparities topics covered included Electronic Health Records, Social Determinants of Health, and Bias in Data. As a result, the course was taught to 34 selected Hispanic participants and evaluated by a survey on a Likert scale (0-4). The surveys showed high satisfaction (more than 80% of participants agreed) regarding the course organization, activities, and covered topics. The students strongly agreed that the activities were relevant to the course and promoted their learning (3.71 ± 0.21). The students strongly agreed that the course was helpful for their professional development (3.76 ± 0.18). The open question was quantitatively analyzed and showed that seventy-five percent of the comments received from the participants confirmed their great satisfaction.
Keyphrases