Function expansion of fiber sensor is highly desired for ultrasensitive optical detection and analysis. Here, we present an approach of multifunctional fiber sensor based on Fano resonances and localized surface plasmon resonance (LSPR) excited via cylindrical vector beam with ability of refractive index (RI) sensing, nano-distance detection, and surface enhanced Raman spectroscopy (SERS). Silver (Ag)-nanocube modified microfiber is theoretically proved to enable to detect RI of the nearby solids and gases based on Fano resonances with a sensitivity of 128.63 nm/refractive index unit (RIU) and 148.21 nm/RIU for solids and gases, respectively. The scattering spectrum of the Ag nanocube has the red-shift response to the varies of the nano-distance between the nanocube and the nearby solid, providing a detection sensitivity up to 1.48 nm (wavelength)/nm (distance). Moreover, this configuration is theoretically verified to have ability to significantly enhance electric field intensity. Radially polarized beam is proved to enhance the electric field intensity as large as 5 times in the side-face configuration compared with linear polarization beam. This fiber-based sensing method is helpful in fields of remote detection, multiple species detection, and cylindrical vector beam-based detection.