Efficient penetration of Scp01-b and its DNA transfer abilities into cells.
Ming ZhangXueli ZhaoJingping GengHuiting LiuFanhui ZengYanyan QinJason LiChangbai LiuHu WangPublished in: Journal of cellular physiology (2018)
The in vivo application potential of viral-based gene delivery approaches is hindered by a risk of insertional oncogenesis. Of the many delivery methods, cell-penetrating peptides (CPP)-based delivery has good biocompatibility and biodegradability. However, low efficiency is still the disadvantage of CPPs-based nucleic acid transfection, and delivery efficiency may vary from different CPPs. Here, we describe Scp01-b, as a new CPP, which can enter cultured cell lines and primary cultured cells examined by fluorescence microscopy and quantitative assay, the internalization process is a concentration, temperature, and incubation time-dependent manner. Scp01-b does not insert into the membrane directly and its uptake is mediated through endocytosis pathway. Moreover, Scp01-b could mediate the uptake of plasmid DNA into the Caski and HSC-T6 cells, and we noted that Scp01-b-mediated transfection efficiency was nearly the same with traditional liposome (TurboFectin)-mediated transfection. These findings suggest that Scp01-b can act as a useful tool for non-viral-based delivery in further application such as reprogramming and gene editing.