Template-Free Orientation Selection of Rod-Like Molecular Semiconductors in Polycrystalline Films.
Giuliano DuvaAlexander MannLinus PithanPaul BeyerJan HagenlocherAlexander GerlachAlexander HinderhoferFrank SchreiberPublished in: The journal of physical chemistry letters (2019)
Many organic semiconductors (OSCs) feature strong optical anisotropy that can be exploited to increase the efficiency of optoelectronic devices. We demonstrate that for the technologically relevant, rod-like OSCs diindenoperylene (DIP), pentacene (PEN), and α-sexithiophene (6T) deposited on silicon oxide surfaces it is possible to prepare polycrystalline thin films in which the long molecular axis is oriented parallel to the substrate plane in a template-free fashion. In films grown by organic molecular beam deposition at room temperature or higher, the molecules are oriented upright standing (σ-orientation). Instead, the here-presented growth at low temperatures followed by slow annealing up to a temperature near molecular desorption has the effect of "freezing" the molecules with their long axis oriented parallel to the substrate plane (λ-orientation) while conferring them crystalline long-range order. We discuss the huge impact on the optical anisotropy of the films observed as a consequence of the orientation transition. Finally, we propose a mechanism for explaining the achieved λ-orientation, which is stable under environmental conditions.