Login / Signup

Electronic Structure Optimization of PdZn-Graphitic Carbon Nitride Nanocomposites as Electrocatalysts for Selective CO 2 to CO Conversion.

Girma W WoyessaChuan-Hung ChuangMohammad RameezChen-Hsiung Hung
Published in: ACS omega (2022)
Herein, a novel PdZn/g-C 3 N 4 nanocomposite electrocatalyst, PdZnGCN, prepared from a facile hydrothermal reduction procedure for an efficient CO 2 to CO conversion has been examined. This composite catalyst reduces CO 2 at a thermodynamic overpotential of 0.79 V versus RHE with a 93.6% CO Faradaic efficiency and a CO partial current density of 4.4 mA cm -2 . Moreover, the turnover frequency for PdZnGCN reaches 20 974 h -1 with an average selectivity of 95.4% for CO after 1 h and an energy efficiency approaching 59%, which is superior to most reported noble metals and metal alloys as electrocatalysts. The enhanced catalytic activity of this nanocomposite is due to synergistic interactions between PdZn and g-C 3 N 4 as evidenced by optimum work function, zeta potential, CO desorption rate, and downshifted d-band center. Furthermore, suppressed grain growth during the formation of nanocomposites also results in faster reaction kinetics, as demonstrated by a lower Tafel slope (93.6 mV/dec) and a larger electrochemically active surface, consequently enhancing the overall performance.
Keyphrases