Login / Signup

Lignosulfonate Improves Photostability and Bioactivity of Abscisic Acid under Ultraviolet Radiation.

Fei GaoSha YuQun TaoWeiming TanLiusheng DuanZhaohu LiHaixin Cui
Published in: Journal of agricultural and food chemistry (2017)
Abscisic acid (ABA), as a commonly used plant growth regulator, is easy to be degraded and lose its bioactivity under sunshine. To select an eco-friendly and efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to ultraviolet (UV) light, we tested the effects of three biodegradable natural-derived high polymers, sodium lignosulfonates 3A [molecular weight (MW) > 50000, with degree of sulfonation (DS) of 0.48] and NA (20000 < MW < 50000, with DS of 0.7) and calcium lignosulfonate CASA (MW < 20000, with DS of 0.7), on the photodegradation of ABA. Lignosulfonates 3A, NA, and CASA showed significant photostabilizing capability on ABA. Lignosulfonate 3A showed preferable photostabilizing effects on ABA compared to CASA, while NA showed an intermediate effect. That indicated that lignosulfonate with a high MW and low DS had a stronger UV absorption and the hollow aggregate micelles formatted by lignosulfonate protect ABA from UV damage. Approximately 50% more ABA was kept when 280 mg/L ABA aqueous solution was irradiated by UV light for 2 h in the presence of 2000 mg/L lignosulfonate 3A. The bioactivity on wheat (JIMAI 22) seed germination was greatly kept by 3A in comparison to that of ABA alone. The 300 times diluent of 280 mg/L ABA plus 2000 mg/L 3A after 2 h of irradiation showed 20.8, 19.3, and 9.3% more inhibition on shoot growth, root growth, and root numbers of wheat seed, separately, in comparison to ABA diluent alone. We conclude that lignosulfonate 3A was an eco-friendly and efficient agent to keep ABA activity under UV radiation. This research could be used in UV-sensitive and water-soluble agrichemicals and to optimize the application times and dosages of ABA products.
Keyphrases
  • transcription factor
  • arabidopsis thaliana
  • aqueous solution
  • drug delivery
  • water soluble
  • oxidative stress
  • liquid chromatography
  • molecularly imprinted
  • clinical evaluation