Login / Signup

Influence of Equatorial CH⋅⋅⋅O Interactions on Secondary Kinetic Isotope Effects for Methyl Transfer.

Philippe Barrie WilsonIan H Williams
Published in: Angewandte Chemie (International ed. in English) (2016)
DFT calculations for methyl cation complexed within a constrained cage of water molecules permit the controlled manipulation of the "axial" donor/acceptor distance and the "equatorial" distance to hydrogen-bond acceptors. The kinetic isotope effect k(CH3)/k(CT3) for methyl transfer within a cage with a short axial distance becomes less inverse for shorter equatorial C⋅⋅⋅O distances: a decrease of 0.5 Å results in a 3 % increase at 298 K. Kinetic isotope effects in AdoMet-dependent methyltransferases may be m∧odulated by CH⋅⋅⋅O hydrogen bonding, and factors other than axial compression may contribute, at least partially, to recently reported isotope-effect variations for catechol-O-methyltransferase and its mutant structures.
Keyphrases