Login / Signup

Interface Engineering of Cu(In,Ga)Se2 Solar Cells by Optimizing Cd- and Zn-Chalcogenide Alloys as the Buffer Layer.

Rong WangMu LanYifeng ZhengJingxiu YangBoyan LiSu-Huai Wei
Published in: ACS applied materials & interfaces (2021)
The optimization of band alignment at the buffer/absorber interface is realized by tuning compositions of Cd and Zn chalcogenides as the buffer layer toward high-efficiency Cu(In,Ga)Se2 (CIGS) solar cells. Using the special quasi-random structure (SQS) approach, we construct randomly disordered ZnxCd1-xSySe1-y alloys and ZnSxO1-x alloys as alternatives to the traditional CdS buffer layer. The compositional dependence of formation energies, lattice parameters, band-gap energies, and band alignments of ZnxCd1-xSySe1-y and ZnSxO1-x alloys is investigated by first-principles density functional theory calculations. For quaternary ZnxCd1-xSySe1-y alloys, we find that the miscibility temperatures and the bandgap bowing coefficients are proportional to the lattice mismatch between the mixing elements. The linear dependence of lattice parameters, trinomial dependence of band-gap energies and band-edge positions on the alloy-composition of ZnxCd1-xSySe1-y alloys are established. For ZnSxO1-x alloys, we find the lattice parameters also exhibit a linear dependence on its composition. Because of the large lattice mismatch and the chemical disparity between ZnO and ZnS, the bowing coefficient for the bandgap energies of ZnSxO1-x alloys is composition dependent, and is larger for dilute ZnSxO1-x alloys. With the optimization criteria of moderate spike-like conduction band offset, large valance band offset, sufficiently wide bandgap, and lattice match with respect to the CIGS absorber, we illustrate the optimal composition range of both ZnxCd1-xSySe1-y alloys and ZnSxO1-x alloys as the buffer layer of the CIGS solar cells. Our work demonstrates that ZnxCd1-xSySe1-y alloys and ZnSxO1-x alloys are promising buffer layers for high-efficiency CIGS solar cells.
Keyphrases
  • solar cells
  • density functional theory
  • high efficiency
  • molecular dynamics
  • computed tomography
  • magnetic resonance
  • gold nanoparticles
  • high resolution
  • contrast enhanced