Login / Signup

Right on track? Performance of satellite telemetry in terrestrial wildlife research.

Maarten HofmanM W HaywardM HeimP MarchandC M RolandsenJenny MattissonF UrbanoM HeurichA MysterudJ MelzheimerN MorelletUlrich VoigtB L AllenBenedikt GehrCarlos RoucoW UllmannØ HolandN H JørgensenG SteinheimF CagnacciM KroeschelP KaczenskyB BuuveibaatarJ C PayneI PalmegianiK JerinaP KjellanderÖ JohanssonS LaPointR BayrakcismithJ D C LinnellM ZaccaroniM L S JorgeJúlia Emi de Faria OshimaA SonghurstC FischerR T Mc BrideJ J ThompsonS StreifR SandfortChristophe BonenfantM DrouillyM KlapprothDietmar ZinnerRichard W YarnellA StronzaL WilmottE MeisingsetMaria ThakerA T VanakS NicolosoR GraeberS SaidM R BoudreauA DevlinR HoogesteijnJ A May-JuniorJ C NifongJ OddenH B QuigleyF TortatoD M ParkerA CasoJ PerrineC TellaecheF ZiebaT Zwijacz-KozicaC L AppelI AxsomW T BeanB CristescuS PériquetK J TeichmanS KarpantyA LicoppeV MengesK BlackT L ScheppersS C Schai-BraunF C AzevedoF G LemosA PayneL H SwanepoelB V WeckworthA BergerAlessandra BertassoniG McCullochP ŠustrV AthreyaD BockmuhlJ CasaerA EkoriD MelovskiC Richard-HansenD van de VyverR Reyna-HurtadoE RobardetN SelvaA SergielM S FarhadiniaP SundeR PortasHüseyin AmbarlıR BerzinsP M KappelerG K MannL PyritzC BissettT GrantR SteinmetzLarissa SwedellR J WelchD ArmenterasO R BidderT M GonzálezA RosenblattS KachelN Balkenhol
Published in: PloS one (2019)
Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.
Keyphrases
  • electronic health record
  • genetic diversity
  • quality improvement
  • risk assessment
  • optical coherence tomography
  • machine learning
  • deep learning