Login / Signup

Probing the Fluxional Bonding Nature of Rapid Cope rearrangements in Bullvalene C10H10 and Its Analogs C8H8, C9H10, and C8BH9.

Yuan-Yuan MaMiao YanHai-Ru LiYan-Bo WuXin-Xin TianHai-Gang LuSi-Dian Li
Published in: Scientific reports (2019)
Bullvalene C10H10 and its analogs semibullvalene C8H8, barbaralane C9H10, and 9-Borabarbaralane C8BH9 are prototypical fluxional molecules with rapid Cope rearrangements at finite temperatures. Detailed bonding analyses performed in this work reveal the existence of two fluxional π-bonds (2 2c-2e π → 2 3c-2e π → 2 2c-2e π) and one fluxional σ-bond (1 2c-2e σ → 1 4c-2e σ → 1 2c-2e σ) in their ground states and transition states, unveiling the universal π + σ double fluxional bonding nature of these fluctuating cage-like species. The highest occupied natural bond orbitals (HONBOs) turn out to be typical fluxional bonds dominating the dynamics of the systems. The 13C-NMR and 1H-NMR shielding tensors and chemical shifts of the model compound C8BH9 are computationally predicted to facilitate future experiments.
Keyphrases
  • magnetic resonance
  • high resolution
  • molecular docking
  • solid state
  • loop mediated isothermal amplification
  • gene expression
  • single cell
  • single molecule
  • fluorescent probe
  • electron transfer