Login / Signup

Disentangling signal and noise in neural responses through generative modeling.

Kendrick N KayJacob S PrinceThomas GebhartGreta TuckuteJingyang ZhouThomas NaselarisHeiko H Schütt
Published in: bioRxiv : the preprint server for biology (2024)
Measurements of neural responses to identically repeated experimental events often exhibit large amounts of variability. This noise is distinct from signal , operationally defined as the average expected response across repeated trials for each given event. Accurately distinguishing signal from noise is important, as each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and it is important not to confuse one for the other. Here, we introduce a principled modeling approach in which response measurements are explicitly modeled as the sum of samples from multivariate signal and noise distributions. In our proposed method-termed Generative Modeling of Signal and Noise (GSN)-the signal distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution. We validate GSN using ground-truth simulations and demonstrate the application of GSN to empirical fMRI data. In doing so, we illustrate a simple consequence of GSN: by disentangling signal and noise components in neural responses, GSN denoises principal components analysis and improves estimates of dimensionality. We end by discussing other situations that may benefit from GSN's characterization of signal and noise, such as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is provided with both MATLAB and Python implementations.
Keyphrases
  • air pollution
  • multiple sclerosis
  • white matter
  • blood brain barrier
  • brain injury