Login / Signup

Calmodulin-dependent signalling pathways are activated and mediate the acute inflammatory response of injured skeletal muscle.

Jijie HuDandan ShiMaochao DingTao HuangRuicai GuJiangwei XiaoCory J XianJianghui DongLiping WangHua Liao
Published in: The Journal of physiology (2019)
Calcium/calmodulin (Ca2+ /CaM) signalling is essential for immune and inflammatory responses in tissues. However, it is unclear if Ca2+ /CaM signalling interferes with muscle inflammation. Here we investigated the roles of CaM-dependent signalling in muscle inflammation in mice that had acute myoinjuries in the tibialis anterior muscle induced by intramuscular cardiotoxin (CTX) injections and received intraperitoneal injections of either the CaM inhibitor calmidazolium chloride (CCL) or CaM agonist calcium-like peptide 1 (CALP1). Multiple inflammatory parameters, including muscle autoantigens and toll-like receptors, mononuclear cell infiltration, cytokines and chemokines associated with peripheral muscle inflammation, were examined after the injury and treatment. CALP1 treatment enhanced intramuscular infiltration of monocytes/macrophages into the damaged tibialis anterior muscle and up-regulated mRNA and protein levels of muscle autoantigens (Mi-2, HARS and Ku70) and Toll-like receptor 3 (TLR3), and mRNA levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), Monocyte chemoattractant protein-1 (MCP1), Monocyte chemoattractant protein-3 (MCP3) and Macrophage inflammatory protein-1(MIP-1α) in damaged muscle. In contrast, CCL treatment decreased the intramuscular cell infiltration and mRNA levels of the inflammatory mediators. After CALP1 treatment, a substantial up-regulation in Ca2+ /calmodulin-dependent protein kinase II (CaMKII), Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV) and nuclear factor of activated T cells (NFAT) activity was detected in CD45+ cells isolated from the damaged muscle. More pro-inflammatory F4/80+ Ly-6C+ cells were detected in CD45-gated cells after CALP1 treatment than in those after CCL treatment or no treatment. Consistently, in interferon-γ-stimulated cultured myoblasts and myotubes, CALP1 treatment up-regulated the activities of CaMKII, CaMKIV and NFAT, and levels of class I/II major histocompatibility complexes (MHC-I/II) and TLR3. Our findings demonstrated that CaM-dependent signalling pathways mediate the injury-induced acute muscle inflammatory response.
Keyphrases