Login / Signup

Triazole Modified Tetraiodothyroacetic Acid Conjugated to Polyethylene Glycol: High Affinity Thyrointegrin αvβ3 Antagonist with Potent Anticancer Activities in Glioblastoma Multiforme.

Mehdi RajabiKavitha GoduguThangirala SudhaDhruba J BharaliShaker A Mousa
Published in: Bioconjugate chemistry (2019)
Discovery of bioactive molecules that target integrins has implicated their role in tumor angiogenesis, tumor growth, metastasis, and other pathological angiogenesis processes. Integrins are members of a family of cell surface receptors that play a critical role in the angiogenesis process. Tetraiodothyroacetic acid (tetrac), a deaminated derivative of l-thyroxine (T4), is a "thyrointegrin" antagonist that blocks the actions of l-triiodothyronine (T3) and T4 with an interaction site that is located at or near the RGD recognition site identified on integrin αvβ3's binding pocket (thyrointegrin αvβ3 receptors). We have enhanced the biological activity of a tetrac-based inhibitor via significantly improving its αvβ3 receptor binding affinity by introducing a triazole ring on the outer ring of tetrac and covalently conjugating to polymer to increase the product's hydrophilicity via PEGylation. The product, P-bi-TAT, was restricted from nuclear translocation and demonstrated high blood brain barrier permeability and retention in contrast to the non-PEG conjugated derivative. Results of biological activity indicated that this macromolecule new chemical entity P-bi-TAT has greater than 400-fold potent integrin αvβ3 affinity versus the parent compound tetrac and has potent anticancer/anti-angiogenesis efficacy against glioblastoma multiforme (GBM). P-bi-TAT administered subcutaneously once daily for 21 days at 1-10 mg/kg mouse body weight resulted in a dose-dependent suppression of GBM tumor growth and viability as monitored with IVIS imaging (P < 0.001). GBM tumors had >95% volume loss and maximal loss of GBM cell viability during the 21 days ON-treatment experiment as well as in the 21 days ON followed by 21 days OFF-treatment experiment (P < 0.001). In conclusion, P-bi-TAT is a promising lead clinical candidate effective in the treatment of human GBM.
Keyphrases