Login / Signup

Ancillary Ligand Effects on Heteroleptic IrIII Dye in Dye-Sensitized Photocatalytic CO2 Reduction: Photoaccumulation of Charges on Arylated Bipyridine Ligand and Its Control on Catalytic Performance.

Ju Hyoung JoSunghan ChoiHa-Yeon CheongJae Yoon ShinChul Hoon KimDae Won ChoHo-Jin SonChyongjin PacSang Ook Kang
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Herein, we report the synthesis, and photochemical and -physical properties, as well as the catalytic performance, of a series of heteroleptic IrIII photosensitizers (IrPSs), [Ir(C^N)2 (N^NAryl )]+ , possessing ancillary ligands that are varied with aryl-substituents on bipyridyl unit [C^N=(2-pyridyl)benzo[b]thiophen-3-yl (btp); N^NAryl =4,4'-Y2 -bpy (Y=-Ph or -PhSi(Ph)3 ]. We found that the π-extension of bipyridyl ligand by aryl-substitution put bipyridyl ligand in use as an electron relay unit that performed charge accumulation before delivering to the catalytic center, greatly improving the overall CO2 -to-CO conversion activities. In a typical run, the aryl-substituted IrPS (tBu IrP-PhSi )-sensitized homogeneous systems (IrPS+ReI catalyst) gave a turnover number of 1340 (ΦCO =24.2 %) at the early stage of photolysis (<5 h). This study demonstrates that the π-character modulation on the ancillary bipyridyl ligand is critical for forthcoming catalytic performance.
Keyphrases
  • early stage
  • highly efficient
  • visible light
  • crystal structure
  • mental health
  • molecular docking
  • radiation therapy
  • room temperature
  • bone mineral density
  • aqueous solution