Login / Signup

Aza-BODIPY-based polymeric nanoparticles for photothermal cancer therapy in a chicken egg tumor model.

Kantapat ChansaenpakGong Yi YongAnawin PrajitPeraya HiranmartsuwanShaamini SelvapaandianBongkot OuengwanaratTunyawat KhrootkaewPiyanut PinyouChin Siang KueAnyanee Kamkaew
Published in: Nanoscale advances (2023)
A new push-pull aza-BODIPY (AZB-CF 3 ) derivative comprised of dimethylamino groups and trifluoromethyl moieties was successfully synthesized. This derivative exhibited broad absorption in the near-infrared region in the range from 798 to 832 nm. It also exhibited significant near-infrared (NIR) signals in low-polar solvents with emission peaks around 835-940 nm, while non-fluorescence in high-polar environments due to the twisted intramolecular charge transfer (TICT) phenomenon. The nanoprecipitation of this compound with phospholipid-based polyethylene glycol (DSPE-PEG) yielded AZB-CF 3 @DSPE-PEG nanoparticles (NPs) with a hydrodynamic size of 70 nm. The NPs exhibited good photostability, colloidal stability, biocompatibility, and excellent photothermal (PTT) competence with a conversion efficiency ( η ) of 44.9%. These NPs were evaluated in vitro and in ovo in a 4T1 breast cancer cell line for NIR light-trigger photothermal therapy. Proven in the chicken egg tumor model, AZB-CF 3 @DSPE-PEG NPs induced severe vascular damage (∼40% vascular destruction), showed great anticancer efficacy (∼75% tumor growth inhibition), and effectively inhibited distant metastasis via photothermal treatment. As such, this PTT-based nanocarrier system could be a potential candidate for a clinical cancer therapy approach.
Keyphrases