Login / Signup

Perisaccadic encoding of temporal information in macaque area V4.

Jakob C B SchwenkSteffen KlingenhoeferBjörn-Olaf WernerStefan DowiaschFrank Bremmer
Published in: Journal of neurophysiology (2021)
The accurate processing of temporal information is of critical importance in everyday life. Yet, psychophysical studies in humans have shown that the perception of time is distorted around saccadic eye movements. The neural correlates of this misperception are still poorly understood. Behavioral and neural evidence suggest that it is tightly linked to other known perisaccadic modulations of visual perception. To further our understanding of how temporal processing is affected by saccades, we studied the representations of brief visual time intervals during fixation and saccades in area V4 of two awake macaques. We presented random sequences of vertical bar stimuli and extracted neural responses to double-pulse stimulation at varying interstimulus intervals. Our results show that temporal information about very brief intervals of as brief as 20 ms is reliably represented in the multiunit activity in area V4. Response latencies were not systematically modulated by the saccade. However, a general increase in perisaccadic activity altered the ratio of response amplitudes within stimulus pairs compared with fixation. In line with previous studies showing that the perception of brief time intervals is partly based on response levels, this may be seen as a possible correlate of the perisaccadic misperception of time.NEW & NOTEWORTHY We investigated for the first time how temporal information on very brief timescales is represented in area V4 around the time of saccadic eye movements. Overall, the responses showed an unexpectedly precise representation of time intervals. Our finding of a perisaccadic modulation of relative response amplitudes introduces a new possible correlate of saccade-related perceptual distortions of time.
Keyphrases
  • health information
  • working memory
  • minimally invasive
  • mass spectrometry
  • multiple sclerosis
  • healthcare
  • blood pressure
  • deep brain stimulation