Login / Signup

Phase Behaviors of Giant Surfactants with Different Numbers of Fluorinated Polyhedral Oligomeric Silsesquioxane "Heads" and One Poly(ethylene oxide) "Tail" at the Air-Water Interface.

Xian XuYu ShaoWeijie WangJianwen LiaoHao LiuWei ZhangWen-Bin ZhangShuguang Yang
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
Giant surfactants with different numbers of aryl-trifluorovinyl ether-functionalized polyhedral oligomeric silsesquioxane (FVPOSS) heads and one poly(ethylene oxide) (PEO) tail, (FVPOSS)n-PEO227, are precisely synthesized. The phase behaviors of (FVPOSS)n-PEO227 at the air-water interface were investigated through surface pressure measurements (isotherm and hysteresis experiments) and the Brewster angle microscopy. Upon increasing the number of FVPOSS heads, the interfacial behaviors of these giant surfactants greatly change. More phase transitions occur during the compression as the number of FVPOSS heads increased from one to two and three. The evolution of morphologies of Langmuir films and compression-expansion hysteresis curves further illustrate phase transitions at the air-water interface. Furthermore, molecular mechanisms to describe phase transitions of (FVPOSS)n-PEO227 at the interface are put forward. This study deepens the understanding of interfacial phase behaviors of special giant surfactants and provides knowledge of nanostructure design and construction at the interface.
Keyphrases
  • high resolution
  • healthcare
  • mass spectrometry
  • high throughput
  • quantum dots
  • optical coherence tomography
  • high speed
  • molecularly imprinted