Login / Signup

Three-Dimensional Microtubular Devices for Lab-on-a-Chip Sensing Applications.

Jiawei WangDaniil KarnaushenkoMariana Medina-SánchezYin YinLibo MaOliver G Schmidt
Published in: ACS sensors (2019)
The rapid advance of micro-/nanofabrication technologies opens up new opportunities for miniaturized sensing devices based on novel three-dimensional (3D) architectures. Notably, microtubular geometry exhibits natural advantages for sensing applications due to its unique properties including the hollow sensing channel, high surface-volume ratio, well-controlled shape parameters and compatibility to on-chip integration. Here the state-of-the-art sensing techniques based on microtubular devices are reviewed. The developed microtubular sensors cover microcapillaries, rolled-up nanomembranes, chemically synthesized tubular arrays, and photoresist-based tubular structures via 3D printing. Various types of microtubular sensors working in optical, electrical, and magnetic principles exhibit an extremely broad scope of sensing targets including liquids, biomolecules, micrometer-sized/nanosized objects, and gases. Moreover, they have also been applied for the detection of mechanical, acoustic, and magnetic fields as well as fluorescence signals in labeling-based analyses. At last, a comprehensive outlook of future research on microtubular sensors is discussed on pushing the detection limit, extending the functionality, and taking a step forward to a compact and integrable core module in a lab-on-a-chip analytical system for understanding fundamental biological events or performing accurate point-of-care diagnostics.
Keyphrases
  • loop mediated isothermal amplification
  • high throughput
  • single cell
  • liquid chromatography