Login / Signup

NKG2Cpos NK Cells Regulate the Expansion of Cytomegalovirus-Specific CD8 T Cells.

Ralf GrutzaWiebke MoskorzTina SenffEugen BäckerMonika LindemannAlbert ZimmermannMarkus UhrbergPhilipp A LangJoerg TimmChristine Cosmovici
Published in: Journal of immunology (Baltimore, Md. : 1950) (2020)
Infection with the human CMV associates with phenotypic alterations in lymphocyte subsets. A highly reproducible finding in CMV-seropositive individuals is an expansion of NKG2Cpos NK cells. In this study, we analyzed if the altered NK cell compartment in CMV-seropositive human donors may affect CMV-specific CD8 T cells. Resting CMV-specific CD8 T cells were terminally differentiated and expressed high levels of the NKG2C ligand HLA-E. Activation of CMV-specific CD8 T cells with the cognate Ag further increased HLA-E expression. In line with a negative regulatory effect of NKG2Cpos NK cells on HLA-Ehigh CD8 T cells, depletion of NKG2Cpos NK cells enhanced Ag-specific expansion of CMV-specific CD8 T cells in vitro. In turn, the activation of NK cells in coculture with CMV-specific CD8 T cells promoted a selective loss of HLA-Ehigh CD8 T cells. To test if NKG2Cpos NK cells can target HLA-Ehigh CD8 T cells, Jurkat T cells with and without stabilized HLA-E on the surface were used. NKG2Cpos NK cells stimulated with HLA-Ehigh Jurkat cells released higher levels of Granzyme B compared with NKG2Cneg NK cells and NKG2Cpos NK cells stimulated with HLA-Elow Jurkat cells. Moreover, intracellular levels of caspase 3/7 were increased in HLA-Ehigh Jurkat cells compared with HLA-Elow Jurkat cells, consistent with higher rates of apoptosis in HLA-Ehigh T cells in the presence of NKG2Cpos NK cells. Our data show that NKG2Cpos NK cells interact with HLA-Ehigh CD8 T cells, which may negatively regulate the expansion of CMV-specific CD8 T cells upon activation.
Keyphrases
  • nk cells
  • induced apoptosis
  • cell cycle arrest
  • cell death
  • endoplasmic reticulum stress
  • endothelial cells
  • oxidative stress
  • machine learning
  • electronic health record
  • binding protein