Epigenetic Variation Induced by Gamma Rays, DNA Methyltransferase Inhibitors, and Their Combination in Rice.
Sung-Il LeeJae Wan ParkSoon-Jae KwonYeong Deuk JoMin Jeong HongJin-Baek KimHong-Il ChoiPublished in: Plants (Basel, Switzerland) (2020)
DNA methylation plays important roles in the regulation of gene expression and maintenance of genome stability in many organisms, including plants. In this study, we treated rice with gamma rays (GRs) and DNA methyltransferase inhibitors (DNMTis) to induce variations in DNA methylation and evaluated epigenetic diversity using methylation-sensitive amplified polymorphism (MSAP) and transposon methylation display (TMD) marker systems. Comparative and integrated analyses of the data revealed that both GRs and DNMTis alone have epimutagenic effects and that combined treatment enhanced these effects. Calculation of methylation rates based on band scoring suggested that both GRs and DNMTis induce epigenetic diversity by demethylation in a dose-dependent manner, and combined treatment can induce variations more synergistically. The difference in the changes in full and hemi-methylation rates between MSAP and TMD is presumed to be caused by the different genomic contexts of the loci amplified in the two marker systems. Principal coordinate, phylogenic, and population structure analyses commonly yielded two clusters of individuals divided by DNMTi treatment. The clustering pattern was more apparent in TMD, indicating that DNMTis have a stronger effect on hypermethylated repetitive regions. These findings provide a foundation for understanding epigenetic variations induced by GRs and DNMTis and for epigenetic mutation breeding.