Login / Signup

Chip-based high resolution tandem mass spectrometric determination of fibroblast growth factor-chondroitin sulfate disaccharides noncovalent interaction.

Adrian C RobuLaurentiu PopescuDaniela G SeidlerAlina Diana Zamfir
Published in: Journal of mass spectrometry : JMS (2019)
Fibroblast growth factor-2 (FGF-2) is involved in wound healing and embryonic development. Glycosaminoglycans (GAGs), the major components of the extracellular matrix (ECM), play fundamental roles at this level. FGF-GAG noncovalent interactions are in the focus of research, due to their influence upon cell proliferation and tissue regeneration. Lately, high resolution mass spectrometry (MS) coupled with chip-nanoelectrospray (nanoESI) contributed a significant progress in glycosaminoglycomics by discoveries related to novel species and their characterization. We have employed a fully automated chip-nanoESI coupled to a quadrupole time-of-flight (QTOF) MS for assessing FGF-GAG noncovalent complexes. For the first time, a CS disaccharide was involved in a binding assay with FGF-2. The experiments were conducted in 10 mM ammonium acetate/formic acid, pH 6.8, by incubating FGF-2 and CS in buffer. The detected complexes were characterized by top-down in tandem MS (MS/MS) using collision induced-dissociation (CID). CID MS/MS provided data showing for the first time that the binding process occurs via the sulfate group located at C4 in GalNAc. This study has demonstrated that chip-MS may generate reliable data upon the formation of GAG-protein complexes and their structure. Biologically, the findings are relevant for studies focused on the identification of the active domains in longer GAG chains.
Keyphrases