A robust electrochemical immunosensor based on core-shell nanostructured silica-coated silver for cancer (carcinoembryonic-antigen-CEA) diagnosis.
Priyanka SinghPranav K KatkarUmakant M PatilRaghvendra A BoharaPublished in: RSC advances (2021)
This work addresses the fabrication of an efficient, novel, and economically viable immunosensing armamentarium that will detect the carcinoembryonic antigen (CEA) typically associated with solid tumors (sarcomas, carcinomas, and lymphomas) and is used as a clinical tumor marker for all these malignancies. We synthesized silver nanoparticles by single-step chemical reduction and coated with silica using a modified Stober method to fabricate silica-coated silver core-shell nanoparticles. The morphologies, structure, and size of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), UV-Visible spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR), and Dynamic Light Scattering (DLS), respectively. The results indicated that the average size of Ag nanoparticles and silica-coated Ag nanoparticles is 50 nm and 80 nm, respectively. Our TEM results indicate that the silica-shell uniformly encapsulates silver core particles. Further, a disposable electrochemical immunosensor for carcinoembryonic antigen (CEA) was proposed based on the antigen immobilized in a silica-coated silver core-shell nanoparticle film on the surface of an indium-tin-oxide (ITO) flat substrate. The morphological characteristics of the constructed biosensor were observed by scanning electron microscopy (SEM) and electrochemical methods. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed for the characterization of the proposed bioelectrode. The cyclic voltammogram appears to be more irreversible on silica coated silver core-shell nanoparticles. It is found that the fabricated immunosensor shows fast potentiometric response under the optimized conditions. The CEA could be determined in the linear range from 0.5 to 10 ng mL -1 with a detection limit of 0.01 ng mL -1 using the interface. The developed flat substrate of ITO for CEA detection (the model reagent) is a potentially promising immunosensing system, manifests good stability, and allows batch fabrication because of its economic feasibility.
Keyphrases
- gold nanoparticles
- label free
- electron microscopy
- silver nanoparticles
- high resolution
- reduced graphene oxide
- sensitive detection
- ionic liquid
- single molecule
- molecularly imprinted
- squamous cell carcinoma
- high grade
- loop mediated isothermal amplification
- solid state
- amino acid
- magnetic resonance imaging
- mass spectrometry
- highly efficient
- capillary electrophoresis