Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo-Fabrizio Derivative.
Zahir ShahRashid JanPoom KumamWejdan DeebaniMeshal ShutaywiPublished in: Molecules (Basel, Switzerland) (2021)
Human immunodeficiency virus (HIV) is a life life-threatening and serious infection caused by a virus that attacks CD4+ T-cells, which fight against infections and make a person susceptible to other diseases. It is a global public health problem with no cure; therefore, it is highly important to study and understand the intricate phenomena of HIV. In this article, we focus on the numerical study of the path-tracking damped oscillatory behavior of a model for the HIV infection of CD4+ T-cells. We formulate fractional dynamics of HIV with a source term for the supply of new CD4+ T-cells depending on the viral load via the Caputo-Fabrizio derivative. In the formulation of fractional HIV dynamics, we replaced the constant source term for the supply of new CD4+ T-cells from the thymus with a variable source term depending on the concentration of the viral load, and introduced a term that describes the incidence of the HIV infection of CD4+ T-cells. We present a novel numerical scheme for fractional view analysis of the proposed model to highlight the solution pathway of HIV. We inspect the periodic and chaotic behavior of HIV for the given values of input factors using numerical simulations.