Login / Signup

Fractional Coulomb blockade for quasi-particle tunneling between edge channels.

Marc P RöösliMichael HugGiorgio NicolíPeter MärkiChristian ReichlBernd RosenowWerner WegscheiderKlaus EnsslinThomas Ihn
Published in: Science advances (2021)
In the fractional quantum Hall effect, the elementary excitations are quasi-particles with fractional charges as predicted by theory and demonstrated by noise and interference experiments. We observe Coulomb blockade of fractional charges in the measured magneto-conductance of a 1.4-micron-wide quantum dot. Interaction-driven edge reconstruction separates the dot into concentric compressible regions with fractionally charged excitations and incompressible regions acting as tunnel barriers for quasi-particles. Our data show the formation of incompressible regions of filling factors 2/3 and 1/3. Comparing data at fractional filling factors to filling factor 2, we extract the fractional quasi-particle charge e */e = 0.32 ± 0.03 and 0.35 ± 0.05. Our investigations extend and complement quantum Hall Fabry-Pérot interference experiments investigating the nature of anyonic fractional quasi-particles.
Keyphrases
  • solid state
  • electronic health record
  • oxidative stress
  • big data
  • machine learning
  • energy transfer
  • anti inflammatory
  • smoking cessation