Login / Signup

IL-35 Suppresses Lipopolysaccharide-Induced Airway Eosinophilia in EBI3-Deficient Mice.

Kyosuke KanaiAh-Mee ParkHiroki YoshidaIkuo TsunodaOsamu Yoshie
Published in: Journal of immunology (Baltimore, Md. : 1950) (2016)
EBI3 functions as the subunit of immune-regulatory cytokines, such as IL-27 and IL-35, by pairing with p28 and p35, respectively. We treated wild-type and EBI3-deficient mice with intratracheal administration of LPS and obtained bronchoalveolar lavage fluid (BALF) 24 h later. Although neutrophils were the predominant cells in BALF from both groups of mice, eosinophils were highly enriched and there was increased production of eosinophil-attracting chemokines CCL11 and CCL24 in BALF of EBI3-deficient mice. The bronchial epithelial cells and alveolar macrophages were the major producers of CCL11 and CCL24. Because no such increases in eosinophils were seen in BALF of p28/IL-27-deficient mice or WSX-1/IL-27Rα subunit-deficient mice upon intratracheal stimulation with LPS, we considered that the lack of IL-35 was responsible for the enhanced airway eosinophilia in EBI3-deficient mice. In vitro, IL-35 potently suppressed production of CCL11 and CCL24 by human lung epithelial cell lines treated with TNF-α and IL-1β. IL-35 also suppressed phosphorylation of STAT1 and STAT3 and induced suppressor of cytokine signaling 3. In vivo, rIL-35 dramatically reduced LPS-induced airway eosinophilia in EBI3-deficient mice, with concomitant reduction of CCL11 and CCL24, whereas neutralization of IL-35 significantly increased airway eosinophils in LPS-treated wild-type mice. Collectively, our results suggest that IL-35 negatively regulates airway eosinophilia, at least in part by reducing the production of CCL11 and CCL24.
Keyphrases