Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes.
Zema ChuYang ZhaoFei MaCai-Xin ZhangHuixiong DengFeng GaoQiufeng YeJunhua MengZhigang YinXingwang ZhangJingbi YouPublished in: Nature communications (2020)
Perovskite light-emitting diodes (PeLEDs) have showed significant progress in recent years; the external quantum efficiency (EQE) of electroluminescence in green and red regions has exceeded 20%, but the efficiency in blue lags far behind. Here, a large cation CH3CH2NH2+ is added in PEA2(CsPbBr3)2PbBr4 perovskite to decrease the Pb-Br orbit coupling and increase the bandgap for blue emission. X-ray diffraction and nuclear magnetic resonance results confirmed that the EA has successfully replaced Cs+ cations to form PEA2(Cs1-xEAxPbBr3)2PbBr4. This method modulates the photoluminescence from the green region (508 nm) into blue (466 nm), and over 70% photoluminescence quantum yield in blue is obtained. In addition, the emission spectra is stable under light and thermal stress. With configuration of PeLEDs with 60% EABr, as high as 12.1% EQE of sky-blue electroluminescence located at 488 nm has been demonstrated, which will pave the way for the full color display for the PeLEDs.