Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications and Applications.
Mohammed MajdoubZakaria AnfarAbdallah AmedlousPublished in: ACS nano (2020)
Atomically 2D thin-layered structures, such as graphene nanosheets, graphitic carbon nitride nanosheets (g-C3N4), hexagonal boron nitride, and transition metal dichalcogenides are emerging as fascinating materials for a good array of domains owing to their rare physicochemical characteristics. In particular, graphitic carbon nitride has turned into a hot subject in the scientific community due to numerous qualities such as simple preparation, electrochemical properties, high adsorption capacity, good photochemical properties, thermal stability, and acid-alkali chemical resistance, etc. Basically, g-C3N4 is considered as a polymeric material consisting of N and C atoms forming a tri-s-triazine network connected by planar amino groups. In comparison with most C-based materials, g-C3N4 possesses electron-rich characteristics, basic moieties, and hydrogen-bonding groups owing to the presence of hydrogen and nitrogen atoms; therefore, it is taken into account as an interesting nominee to further complement carbon in applications of functional materials. Nevertheless, g-C3N4 has some intrinsic limitations and drawbacks mainly related to a relatively poor specific surface area, rapid charge recombination, a limited light absorption range, and a poor dispersibility in both aqueous and organic mediums. To overcome these shortcomings, numerous chemical modification approaches have been conducted with the aim of expanding the range of application of g-C3N4 and enhancing its properties. In the current review, the comprehensive survey is conducted on g-C3N4 chemical functionalization strategies including covalent and noncovalent approaches. Covalent approaches consist of establishing covalent linkage between the g-C3N4 structure and the chemical modifier such as oxidation/carboxylation, amidation, polymer grafting, etc., whereas the noncovalent approaches mainly consist of physical bonding and intermolecular interaction such as van der Waals interactions, electrostatic interactions, π-π interactions, and so on. Furthermore, the preparation, characterization, and diverse applications of functionalized g-C3N4 in various domains are described and recapped. We believe that this work will inspire scientists and readers to conduct research with the aim of exploring other functionalization strategies for this material in numerous applications.
Keyphrases
- visible light
- quantum dots
- transition metal
- reduced graphene oxide
- molecularly imprinted
- gold nanoparticles
- mental health
- healthcare
- physical activity
- high resolution
- ionic liquid
- drug delivery
- high throughput
- dna repair
- hepatitis c virus
- sensitive detection
- liquid chromatography
- simultaneous determination
- hiv infected
- single cell
- amino acid