Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio.
Md ShahjahanMohammad Shadiqur RahmanS M Majharul IslamMd Helal UddinMd Al-EmranPublished in: Environmental science and pollution research international (2019)
Global warming and indiscriminate usages of pesticides are notable concern to all. The present study has been conducted to evaluate the effects of high temperature on acute toxicity of sumithion in adult zebrafish. A 2-day renewal bioassay system was used to determine the 96 h LC50 value of sumithion at three temperature regimes, such as 25 °C, 30 °C, and 35 °C. Blood glucose (mg/dL) level was measured in control (0.0 mg/L) and low concentration (1.0 mg/L) of sumithion during the determination of LC50 in three temperature conditions. In addition, micronucleus (MN), erythrocytic nuclear abnormalities (ENA), and erythrocytic cellular abnormalities (ECA) tests were performed in the blood erythrocytes. The 96 h LC50 value of sumithion for zebrafish was significantly lower at 35 °C, which indicates that the toxicity of sumithion increases at higher temperature. Blood glucose level was significantly increased by sumithion in all temperature conditions, while it was significantly higher in the highest (35 °C) temperature compared to the lowest (25 °C) temperature in both control and sumithion-treated fish. Similarly, frequencies of MN, ENA, and ECA were elevated by sumithion in all temperature conditions, whereas it was significantly raised in the highest (35 °C) temperature compared to the lowest (25 °C) temperature in both control and sumithion treated fish. With increasing temperature in exposure to sumithion, dissolved oxygen decreased significantly, whereas free CO2 increased significantly. On the other hand, no distinct changes were observed in pH and total alkalinity during the experimental period. Therefore, it can be inferred that increasing temperature enhances the toxicity of sumithion in the zebrafish.
Keyphrases
- blood glucose
- oxidative stress
- risk assessment
- blood pressure
- mass spectrometry
- type diabetes
- simultaneous determination
- liver failure
- adipose tissue
- high resolution
- high temperature
- insulin resistance
- acute respiratory distress syndrome
- glycemic control
- organic matter
- molecularly imprinted
- high resolution mass spectrometry