Login / Signup

Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy.

Seonghoon WooKyung Mee SongHee-Sung HanMin-Seung JungMi-Young ImKi-Suk LeeKun Soo SongPeter FischerJung-Il HongJun Woo ChoiByoung-Chul MinHyun Cheol KooJoonyeon Chang
Published in: Nature communications (2017)
Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.
Keyphrases