Login / Signup

J -Driven dynamic nuclear polarization for sensitizing high field solution state NMR.

Maria Grazia ConcilioIlya KuprovLucio Frydman
Published in: Physical chemistry chemical physics : PCCP (2022)
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B 0 , unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings J ex of the order of the electron Larmor frequency ω E . Numerical and analytical calculations show that in such J ex ≈ ± ω E cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Keyphrases
  • solid state
  • magnetic resonance
  • high efficiency
  • high resolution
  • density functional theory
  • ionic liquid
  • radiation therapy
  • diabetic rats
  • radiation induced
  • subarachnoid hemorrhage
  • liquid chromatography