Login / Signup

Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase.

Chang LuMohamad ZandiehJinkai ZhengJiaying Xie
Published in: Nanoscale (2023)
Peroxidase-based assays are the most extensively used in bioanalytical sensors because of their simple colorimetric readout and high sensitivity owing to enzymatic signal amplification. To improve the stability, modification, and cost of protein-based enzymes, such as horseradish peroxidase (HRP), various enzyme mimics, such as DNAzymes and nanozymes, have emerged over the last few decades. In this study, we compared the peroxidase activities of HRP, a G-quadruplex (G4)-hemin DNAzyme, and Fe 3 O 4 nanozymes in terms of activity and stability under different conditions. The reactions were much slower at pH 7 than at pH 4. At pH 4, the turnover rate of HRP (375 s -1 ) was faster than that of G4 DNAzyme (0.14 s -1 ) and Fe 3 O 4 (6.1 × 10 -4 s -1 , calculated by surface Fe concentration). When normalized to mass concentrations, the trend was the same. Through observation of the reaction for a long time of 2 h, the changes in the color and UV-vis spectra were also different for these catalysts, indicating different reaction mechanisms among these catalysts. Moreover, different buffers and nanozyme sizes were found to influence the activity of the catalysts. Fe 3 O 4 showed the highest stability compared to HRP and G4 DNAzyme after a catalytic reaction or incubation with H 2 O 2 for a few hours. This study helps to understand the properties of catalysts and the development of novel catalysts with enzyme-mimicking activities for application in various fields.
Keyphrases