Login / Signup

Graph Theoretical Analysis of Brain Network Characteristics in Brain Tumor Patients: A Systematic Review.

Eric S SemmelTobiloba R QuadriTricia Z King
Published in: Neuropsychology review (2021)
Graph theory is a branch of mathematics that allows for the characterization of complex networks, and has rapidly grown in popularity in network neuroscience in recent years. Researchers have begun to use graph theory to describe the brain networks of individuals with brain tumors to shed light on disrupted networks. This systematic review summarizes the current literature on graph theoretical analysis of magnetic resonance imaging data in the brain tumor population with particular attention paid to treatment effects and other clinical factors. Included papers were published through June 24th, 2020. Searches were conducted on Pubmed, PsycInfo, and Web of Science using the search terms (graph theory OR graph analysis) AND (brain tumor OR brain tumour OR brain neoplasm) AND (MRI OR EEG OR MEG). Studies were eligible for inclusion if they: evaluated participants with a primary brain tumor, used graph theoretical analyses on structural or functional MRI data, MEG, or EEG, were in English, and were an empirical research study. Seventeen papers met criteria for inclusion. Results suggest alterations in network properties are often found in people with brain tumors, although the directions of differences are inconsistent and few studies reported effect sizes. The most consistent finding suggests increased network segregation. Changes are most prominent with more intense treatment, in hub regions, and with factors such as faster tumor growth. The use of graph theory to study brain tumor patients is in its infancy, though some conclusions can be drawn. Future studies should focus on treatment factors, changes over time, and correlations with functional outcomes to better identify those in need of early intervention.
Keyphrases