Login / Signup

Online Quaternized Derivatization Mapping and Glycerides Profiling of Cancer Tissues by Laser Ablation Carbon Fiber Ionization Mass Spectrometry.

Yingjie LuYuqi CaoLi ZhangYuanyuan LvYing ZhangYue SuYin-Long Guo
Published in: Analytical chemistry (2022)
Mass spectrometry imaging has become a hot research field owing to its ability to reflect the distribution of multiple metabolites in tissue. However, not all kinds of metabolites have great ionization efficiency in mass spectrometry imaging. The mass signals of low polar metabolites like monoglycerides and diglycerides may be seriously suppressed. Many strategies have been proposed to fix the problem, such as on-tissue derivatization and online derivatization. Also, some challenges were encountered when implementing these approaches. Herein, a platform coupled online quaternized derivatization and laser ablation carbon fiber ionization mass spectrometry imaging has been developed. The mass signals of monoglycerides and diglycerides were drastically increased in the platform, and high-quality mass images of these metabolites could be acquired readily. In the platform, metabolites were first desorbed by a laser and then reacted online with a derivatization reagent transmitted by carbon fiber ionization, which also undertook the postionization of derivatization products. Pyridine acted as the main derivatization reagent to target metabolites with hydroxyl groups. Remarkably, the derivatization reaction proceeded rapidly without any catalyst owing to the high energy provided by the laser. The mass images of eight monoglycerides and 21 diglycerides were achieved after applying the platform into human ovarian cancer tissues. Notably, a higher mass intensity of these glycerides was captured in cancerous tissues than in para-cancerous tissues, which might infer aberrations in glyceride metabolisms of cancerous tissues.
Keyphrases