Microwaves and Ultrasound as Emerging Techniques for Lignocellulosic Materials.
Ana FernandesLuísa P Cruz-LopesBruno EstevesDmitry Victorovitch EvtuguinPublished in: Materials (Basel, Switzerland) (2023)
Currently, in the context of biorefinery and bioeconomy, lignocellulosic biomass is increasingly used to produce biofuels, biochemicals and other value-added products. Microwaves and ultrasound are emerging techniques that enable efficient and environmentally sustainable routes in the transformation of lignocellulosic biomass. This review presents some of the most important works published in the last few years on the application of microwaves and/or ultrasound in lignocellulosic materials pretreatment and can be used as a starting point for research into this theme. This review is divided into four parts. In Part I, the theoretical fundamentals of microwave and ultrasound treatments are reviewed. Dielectric constants for biomass, factors that influence pretreatment, are some of the subjects addressed. In Part II, the effects that these techniques have on lignocellulosic biomass (on the size and surface area of the particle; on the content of lignin, hemicellulose and cellulose; on the crystallinity index of cellulose; on the effect of solubilization of organic matter; on hydrolysis and reduction of sugars) are discussed. In Part III, emphasis is given to the contribution of microwaves and ultrasound in obtaining value-added products. In this context, several examples of liquefaction and extraction procedures are presented. Part IV describes examples of performing sonocatalysis on lignocellulosic biomass to obtain value-added products, such as furfural, whose production is significantly reduced by ultrasound treatment.