Login / Signup

Formation of Heteropolynuclear Lanthanide Complexes Using Macrocyclic Phosphonated Cyclam-Based Ligands.

Richard C KnightonLohona K SoroThibault TroadecValerie MazanAline M NonatMourad ElhabiriNathalie Saffon-MerceronSaifou DjenadPr Raphael TripierLoïc J Charbonnière
Published in: Inorganic chemistry (2020)
Ligands L1 and L2, respectively based on a cyclam and a cross-bridged cyclam scaffold functionalized at N1 and N8 by 6-phosphonic-2-methylene pyridyl groups, are described. While complexation of lanthanide (Ln) cations with L2 was not possible, a family of complexes has been prepared with L1, of the general formulae [LnL1H2]Cl (Ln3+ = Lu, Tb, Yb) or [LnL1H] (Ln3+ = Eu). The solution, structural, potentiometric, and photophysical data for these novel ligands and their complexes have been investigated, including a solid-state study by X-ray diffraction (L1, L2, and [EuL1H]), 1H NMR complexation investigations (Lu3+), as well as UV-vis absorption and luminescence spectroscopy in water and D2O (pH ≈ 7). L1 forms 1:1 metal-ligand stoichiometric octadentate complexes in solution. Importantly, the pyridyl phosphonate functions are capable of simultaneous chelation to the metal center and of interaction with a second metal center. 1H NMR (Lu3+) and spectrophotometric titrations of the isolated [TbL1]- complex by EuCl3 salts demonstrated the formation of high-order (hetero)polymetallic species in aqueous solution (H2O, pH = 7). Global analysis of the luminescence titration experiment points to the formation of 4:1, 3:1, and 3:2 [TbL1]/Eu heteropolynuclear assemblies, exhibiting a strong preference to forming [TbL1]3Eu2 at increased europium concentrations, with energy transfer occurring between the kinetically inert terbium complex and added europium cations.
Keyphrases
  • energy transfer
  • solid state
  • quantum dots
  • aqueous solution
  • ionic liquid
  • high resolution
  • magnetic resonance
  • big data
  • single molecule
  • deep learning