Login / Signup

Carbon-biodiversity relationships in a highly diverse subtropical forest.

Andreas SchuldtXiao-Juan LiuFrançois BuscotHelge BruelheideAlexandra ErfmeierJin-Sheng HeAlexandra-Maria KleinKe-Ping MaMichael Scherer-LorenzenBernhard SchmidThomas ScholtenZhiyao TangStefan TrogischChristian WirthTesfaye WubetMichael Staab
Published in: Global change biology (2023)
Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stocks, stand age and tree diversity might influence carbon-biodiversity relationships. Using a large dataset (>4600 heterotrophic species of 23 taxonomic groups) from secondary, subtropical forests, we tested how multitrophic diversity and diversity within trophic groups relate to aboveground, belowground and total carbon stocks at different levels of tree species richness and stand age. Our study revealed that aboveground carbon, the key component of climate-based management, was largely unrelated to multitrophic diversity. By contrast, total carbon stocks-i.e. including belowground carbon-emerged as a significant predictor of multitrophic diversity. Relationships were non-linear and strongest for lower trophic levels, but non-significant for higher trophic level diversity. Tree species richness and stand age moderated these relationships, suggesting long-term regeneration of forests may be particularly effective in reconciling carbon and biodiversity targets. Our findings highlight that biodiversity benefits of climate-oriented management need to be evaluated carefully, and only maximizing aboveground carbon may fail to account for biodiversity conservation requirements.
Keyphrases
  • climate change
  • stem cells
  • healthcare
  • magnetic resonance
  • computed tomography
  • single cell