Login / Signup

A computational tool for simulation and design of tangential multi-energy soft x-ray pin-hole cameras for tokamak plasmas.

H YamazakiL F Delgado-AparicioR GroebnerB GriersonK HillN A PablantB StrattonP EfthimionA EjiriY TakaseM Ono
Published in: The Review of scientific instruments (2018)
A new tool has been developed to calculate the spectral, spatial, and temporal responses of multi-energy soft x-ray (ME-SXR) pinhole cameras for arbitrary plasma densities (n e,D), temperature (T e), and impurity densities (n Z). ME-SXR imaging provides a unique opportunity for obtaining important plasma properties (e.g., T e, n Z, and Z eff) by measuring both continuum and line emission in multiple energy ranges. This technique employs a pixelated x-ray detector in which the lower energy threshold for photon detection can be adjusted independently. Simulations assuming a tangential geometry and DIII-D-like plasmas (e.g., n e,0 ≈ 8 × 1019 m-3 and T e,0 ≈ 2.8 keV) for various impurity (e.g., C, O, Ar, Ni, and Mo) density profiles have been performed. The computed brightnesses range from few 102 counts pixel-1 ms-1 depending on the cut-off energy thresholds, while the maximum allowable count rate is 104 counts pixel-1 ms-1. The typical spatial resolution in the mid-plane is ≈0.5 cm with a photon-energy resolution of 500 eV at a 500 Hz frame rate.
Keyphrases