Login / Signup

High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures.

Jiali ShenWiebke ScholzXu-Cheng HePutian ZhouGuillaume MarieMingyi WangRuby MartenMihnea SurduBirte RörupRima BaalbakiAntonio AmorimFarnoush AtaeiDavid M BellBarbara BertozziZoé BrasseurLucía CaudilloDexian ChenBiwu ChuLubna DadaJonathan DuplissyHenning FinkenzellerManuel GranzinRoberto GuidaMartin HeinritziVictoria HofbauerSiddharth IyerDeniz KemppainenWeimeng KongJordan E KrechmerAndreas KürtenHoussni LamkaddamChuan Ping LeeBrandon LopezNaser G A MahfouzHanna E ManninenDario MassabòRoy L MauldinBernhard MentlerTatjana MüllerJoschka PfeiferMaxim PhilippovAna A PiedehierroPontus RoldinSiegfried SchobesbergerMario SimonDominik StolzenburgYee Jun ThamAntónio ToméNsikanabasi Silas UmoDongyu WangYonghong WangStefan K WeberAndré WeltiRobin Wollesen de JongeYusheng WuMarcel Zauner-WieczorekFelix ZustUrs BaltenspergerJoachim CurtiusRichard C FlaganArmin HanselOttmar MöhlerTuukka PetäjäRainer VolkamerMarkku KulmalaKatrianne LehtipaloMatti P RissanenJasper KirkbyImad El HaddadFederico BianchiMikko SipiläNeil M DonahueDouglas R Worsnop
Published in: Environmental science & technology (2022)
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H 2 SO 4 ). Despite their importance, accurate prediction of MSA and H 2 SO 4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H 2 SO 4 production is modestly affected. This leads to a gas-phase H 2 SO 4 -to-MSA ratio (H 2 SO 4 /MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH 3 S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NO x effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H 2 SO 4 /MSA measurements.
Keyphrases
  • hydrogen peroxide
  • gene expression
  • climate change
  • nitric oxide
  • mass spectrometry