Login / Signup

Mevastatin promotes neuronal survival against Aβ-induced neurotoxicity through AMPK activation.

Edy KorneliusHsin-Hua LiChiung-Huei PengHui-Wen HsiaoYi-Sun YangChien-Ning HuangChih-Li Lin
Published in: Metabolic brain disease (2017)
Statins or HMG-CoA reductase inhibitors have been shown to be effective at lowering cholesterol levels, and the application of these molecules has gradually emerged as an attractive therapeutic strategy for neurodegenerative diseases. Epidemiological studies suggest that statin use is associated with a decreased incidence of Alzheimer's disease (AD). Thus, statins may play a beneficial role in reducing amyloid β (Aβ) toxicity, the most relevant pathological feature and pathogenesis of AD. However, the precise mechanisms involved in statin-inhibited Aβ toxicity remain unclear. In the present study, we report that mevastatin significantly protects against Aβ-induced neurotoxicity in SK-N-MC neuronal cells by restoring impaired insulin signaling. This protection appears to be associated with the activation of AMP-activated protein kinase (AMPK), which has long been known to increase insulin sensitivity. Our results also indicate that high levels of cholesterol likely underlie Aβ-induced neurotoxicity and that activation of AMPK by mevastatin alleviates insulin resistance. Signaling through the insulin receptor substrate-1/Akt pathway appears to lead to cell survival. These findings demonstrate that mevastatin plays a potential therapeutic role in targeting Aβ-mediated neurotoxicity. The molecule presents a novel therapeutic strategy for further studies in AD prevention and therapeutics.
Keyphrases