Login / Signup

Psychometric benefits of self-chosen rating scales over given rating scales.

Tanja KutscherMichael Eid
Published in: Behavior research methods (2024)
Rating scales are susceptible to response styles that undermine the scale quality. Optimizing a rating scale can tailor it to individuals' cognitive abilities, thereby preventing the occurrence of response styles related to a suboptimal response format. However, the discrimination ability of individuals in a sample may vary, suggesting that different rating scales may be appropriate for different individuals. This study aims to examine (1) whether response styles can be avoided when individuals are allowed to choose a rating scale and (2) whether the psychometric properties of self-chosen rating scales improve compared to given rating scales. To address these objectives, data from the flourishing scale were used as an illustrative example. MTurk workers from Amazon's Mechanical Turk platform (N = 7042) completed an eight-item flourishing scale twice: (1) using a randomly assigned four-, six-, or 11-point rating scale, and (2) using a self-chosen rating scale. Applying the restrictive mixed generalized partial credit model (rmGPCM) allowed examination of category use across the conditions. Correlations with external variables were calculated to assess the effects of the rating scales on criterion validity. The results revealed consistent use of self-chosen rating scales, with approximately equal proportions of the three response styles. Ordinary response behavior was observed in 55-58% of individuals, which was an increase of 12-15% compared to assigned rating scales. The self-chosen rating scales also exhibited superior psychometric properties. The implications of these findings are discussed.
Keyphrases
  • psychometric properties
  • risk assessment
  • machine learning