Login / Signup

Durability of Metal-Composite Friction Spot Joints under Environmental Conditions.

Seyed M GoushegirNico ScharnaglJorge F Dos SantosSergio T Amancio-Filho
Published in: Materials (Basel, Switzerland) (2020)
The current paper investigates the durability of the single-lap shear aluminum-composite friction spot joints and their behavior under harsh accelerated aging as well as natural weathering conditions. Four aluminum surface pre-treatments were selected to be performed on the joints based on previous investigations; these were sandblasting (SB), conversion coating (CC), phosphoric acid anodizing (PAA), and PAA with a subsequent application of primer (PAA-P). Most of the pre-treated specimens retained approximately 90% of their initial as-joined strength after accelerated aging experiments. In the case of the PAA pre-treatment, the joint showed a lower retained strength of about 60%. This was explained based on the penetration of humidity into the fine pores of the PAA pre-treated aluminum, reducing the adhesion between the aluminum and composite. Moreover, friction spot joints produced with three selected surface pre-treatments were held under outside natural weathering conditions for one year. PAA-P surface pre-treated specimens demonstrated the best performance with a retained strength of more than 80% after one year. It is believed that tight adhesion and chemical bonding reduced the penetration of humidity at the interface between the joining parts.
Keyphrases
  • blood brain barrier
  • air pollution
  • cystic fibrosis
  • escherichia coli
  • staphylococcus aureus
  • climate change
  • oxide nanoparticles
  • cell migration
  • combination therapy
  • cell adhesion
  • transition metal