Distinct signatures of calcium activity in brain mural cells.
Chaim GlückKim David FerrariNoemi BininiAnnika KellerAiman S SaabJillian L StobartBruno WeberPublished in: eLife (2021)
Pericytes have been implicated in various neuropathologies, yet little is known about their function and signaling pathways in health. Here, we characterized calcium dynamics of cortical mural cells in anesthetized or awake Pdgfrb-CreERT2;Rosa26< LSL-GCaMP6s > mice and in acute brain slices. Smooth muscle cells (SMCs) and ensheathing pericytes (EPs), also named as terminal vascular SMCs, revealed similar calcium dynamics in vivo. In contrast, calcium signals in capillary pericytes (CPs) were irregular, higher in frequency, and occurred in cellular microdomains. In the absence of the vessel constricting agent U46619 in acute slices, SMCs and EPs revealed only sparse calcium signals, whereas CPs retained their spontaneous calcium activity. Interestingly, chemogenetic activation of neurons in vivo and acute elevations of extracellular potassium in brain slices strongly decreased calcium activity in CPs. We propose that neuronal activation and an extracellular increase in potassium suppress calcium activity in CPs, likely mediated by Kir2.2 and KATP channels.
Keyphrases
- induced apoptosis
- liver failure
- healthcare
- respiratory failure
- signaling pathway
- public health
- mental health
- resting state
- magnetic resonance
- type diabetes
- dna methylation
- single cell
- intensive care unit
- adipose tissue
- metabolic syndrome
- functional connectivity
- magnetic resonance imaging
- brain injury
- cell cycle arrest
- social media
- cell proliferation
- contrast enhanced
- endoplasmic reticulum stress