Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
Lei GuoYongqing DuanYong An HuangZhouping YinPublished in: Micromachines (2018)
Electrohydrodynamic jet (e-jet) printing has very promising applications due to its high printing resolution and material compatibility. It is necessary to know how to choose the printing parameters to get the right ejection volume. The previous scaling law of the ejection volume in e-jet printing borrows the scaling law of the ejection volume of an unstable isolated droplet charged to the Rayleigh limit. The influence of viscosity, applied voltage amplitude, and nozzle-to-substrate distance on the ejection volume in e-jet printing was not taken into account in the scaling law. This study investigated the influence of viscosity, conductivity, applied voltage, and nozzle-to-substrate distance on the ejection volume. The ejection volume increases with viscosity and decreases with applied voltage and nozzle-to-substrate distance. The average electric field was kept unchanged while changing the nozzle-to-substrate distance by changing the applied voltage according to the electric field model of a semi-infinite wire perpendicular to an infinite large planar counter electrode. The ejection volume decreases with conductivity as V ~ K - 0.6 , which is different from the previous scaling law, which concludes that V ~ K - 1 . Finally, a model about the relation between the ejection volume and four parameters was established by regression analysis using a third-order polynomial. Two more experiments were done, and the predicted results of the fitted model accorded well with the experiments. The model can be used to choose the ink properties and process parameters to get the right ejection volume.