Login / Signup

Effect of the Ratio of Betamethasone to TNF-α siRNA Coencapsulated in Solid Lipid Nanoparticles on the Acute Proinflammatory Activity of the Nanoparticles.

Hannah L O'MaryMahmoud S HanafyAbdulaziz M AldayelSolange A ValdesRiyad F AlzhraniStephanie HufnagelJohn J KolengZhengrong Cui
Published in: Molecular pharmaceutics (2019)
There is evidence that encapsulating glucocorticoids into nucleic acid-containing nanoparticles reduces the inflammatory toxicities of the nanoparticles. Herein, using betamethasone acetate (BA), a glucocorticoid, and a solid lipid nanoparticle formulation of siRNA, we confirmed that coencapsulating BA into the siRNA solid lipid nanoparticles significantly reduced the proinflammatory activity of the siRNA nanoparticles in a mouse model. Using TNF-α siRNA, we then showed that the BA and TNF-α siRNA coencapsulated into the solid lipid nanoparticles acted as a dual anti-inflammatory and synergistically reduced TNF-α release by mouse macrophages in culture following stimulation with lipopolysaccharide, as compared to solid lipid nanoparticles encapsulated with TNF-α siRNA or BA alone. Importantly, upon studying the effect of the ratio of BA and TNF-α siRNA on the proinflammatory activity of the resultant nanoparticles, we identified that BA and TNF-α siRNA coencapsulated solid lipid nanoparticles prepared with a BA to TNF-α siRNA weight ratio of 2:1 induced the lowest proinflammatory cytokine production by macrophages in culture. This result was in comparison to nanoparticles prepared with BA to TNF-α siRNA ratios both higher and lower than 2:1 (i.e., 4:1, 1:1, and 0.5:1) and is likely due to differences in molecular interactions among the various components in the BA and TNF-α-siRNA coencapsulated solid lipid nanoparticles at these ratios. Encapsulating glucocorticoids into siRNA-nanoparticles represents a viable strategy to reduce the proinflammatory activity of the nanoparticles; however, the ratio of the glucocorticoid to siRNA in the nanoparticles requires optimization.
Keyphrases
  • rheumatoid arthritis
  • cancer therapy
  • mouse model
  • hyaluronic acid
  • walled carbon nanotubes
  • inflammatory response
  • intensive care unit
  • toll like receptor
  • drug induced
  • diabetic rats
  • single molecule