QM/MM Nonadiabatic Dynamics: the SHARC/COBRAMM Approach.
Davide AvaglianoMatteo BonfantiMarco GaravelliLeticia GonzálezPublished in: Journal of chemical theory and computation (2021)
We present the SHARC/COBRAMM approach to enable easy and efficient excited-state dynamics simulations at different levels of electronic structure theory in the presence of complex environments using a quantum mechanics/molecular mechanics (QM/MM) setup. SHARC is a trajectory surface-hoping method that can incorporate the simultaneous effects of nonadiabatic and spin-orbit couplings in the excited-state dynamics of molecular systems. COBRAMM allows ground- and excited-state QM/MM calculations using a subtractive scheme, with electrostatic embedding and a hydrogen link-atom approach. The combination of both free and open-source program packages provides a modular and extensive framework to model nonadiabatic processes after light irradiation from the atomistic scale to the nano-scale. As an example, the relaxation of acrolein from S1 to T1 in solution is provided.