Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion.
Yiru XiaZhaowenbin ZhangKecong ZhouZhikai LinRong ShuYuze XuZhen ZengJiang ChangYufeng XiePublished in: Regenerative biomaterials (2024)
Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu 2+ and Zn 2+ and SiO 3 2 - ) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.
Keyphrases
- drug delivery
- tissue engineering
- early stage
- soft tissue
- oxidative stress
- wound healing
- hyaluronic acid
- cancer therapy
- photodynamic therapy
- heavy metals
- drug release
- climate change
- radiation therapy
- atrial fibrillation
- depressive symptoms
- physical activity
- combination therapy
- rectal cancer
- oral health
- water soluble
- sleep quality
- room temperature