Login / Signup

Mechanical Properties and Water Stability of High Ductility Magnesium Phosphate Cement-Based Composites (HDMC).

Hu FengYang WangAofei GuoXiangyu Zhao
Published in: Materials (Basel, Switzerland) (2021)
In this study, the compressive test and four-point flexural test were carried out to explore the water stability as well as mechanical properties of high ductility magnesium phosphate cement-based composites (HDMC). The effects of ambient curing age (7 d and 28 d), water immersion age (7 d, 28 d, and 56 d), water/binder ratio (W/B), and magnesium oxide/potassium dihydrogen phosphate ratio (M/P) on the mechanical properties (compressive strength, first-crack strength, ultimate flexural strength, ductility index, and toughness index) and water stability of the HDMC were examined. The results showed that the 28-day ambient curing could lead to higher retention rates of strength, ductility, and toughness than 7-day ambient curing, indicating better water stability; however, it did not result in significant improvement in the mechanical properties of the HDMC. As the water immersion age increased, the mechanical properties of the HDMC with 7-day ambient curing showed an obvious downward trend; the mechanical properties of the HDMC with 28-day ambient curing did not show an obvious decrease and even could be increased in many cases, especially when the water immersion age was 56 days; and the change of water stability was consistent with that of the mechanical properties. If all indexes and their corresponding retention rates were considered comprehensively, the W/B ratio of 0.16 and the M/P ratio of 5 seemed to be the optimum values for the HDMC. The scanning electron microscopy analysis confirmed that the water immersion had a large adverse effect on the HDMC and thus reduced their mechanical properties.
Keyphrases
  • air pollution
  • particulate matter
  • high resolution
  • drug induced
  • electronic health record