Login / Signup

NCPCDA: network consistency projection for circRNA-disease association prediction.

Guang-Hui LiYingjie YueCheng LiangQiu XiaoPingjian DingJiawei Luo
Published in: RSC advances (2019)
A growing body of evidence indicates that circular RNAs (circRNAs) play a pivotal role in various biological processes and have a close association with the initiation and progression of diseases. Moreover, circRNAs are considered as promising biomarkers for disease diagnosis owing to their characteristics of conservation, stability and universality. Inferring disease-circRNA relationships will contribute to the understanding of disease pathology. However, it is costly and laborious to discover novel disease-circRNA interactions by wet-lab experiments, and few computational methods have been devoted to predicting potential circRNAs for diseases. Here, we advance a computational method (NCPCDA) to identify novel circRNA-disease associations based on network consistency projection. For starters, we make use of multi-view similarity data, including circRNA functional similarity, disease semantic similarity, and association profile similarity, to construct the integrated circRNA similarity and disease similarity. Then, we project circRNA space and disease space on the circRNA-disease interaction network, respectively. Finally, we can obtain the predicted circRNA-disease association score matrix by combining the above two space projection scores. Simulation results show that NCPCDA can efficiently infer disease-circRNA relationships with high accuracy, obtaining AUCs of 0.9541 and 0.9201 in leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, case studies also suggest that NCPCDA is promising for discovering new disease-circRNA interactions. The NCPCDA dataset and code, as well as the detailed readme file for our code, can be downloaded from Github (https://github.com/ghli16/NNCPCD).
Keyphrases
  • magnetic resonance imaging
  • computed tomography
  • magnetic resonance
  • machine learning
  • deep learning
  • electronic health record