Login / Signup

Exciton Migration and Amplified Quenching on Two-Dimensional Metal-Organic Layers.

Lingyun CaoZekai LinWenjie ShiZi WangCankun ZhangXuefu HuCheng WangWenbin Lin
Published in: Journal of the American Chemical Society (2017)
The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal-organic layers (2D-MOLs) and three-dimensional metal-organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3″-nitro-4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal-ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.
Keyphrases
  • energy transfer
  • metal organic framework
  • quantum dots
  • solar cells
  • single cell
  • stem cells
  • single molecule
  • highly efficient